
Multi-nucleon transfer reactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1970 J. Phys. A: Gen. Phys. 3 179

(http://iopscience.iop.org/0022-3689/3/2/010)

Download details:

IP Address: 171.66.16.71

The article was downloaded on 02/06/2010 at 04:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/3/2
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Multi-nucleon transfer reactions 

M. EL-NAD1 and M. A. SHARAF 
Physics Department, Faculty of Science, Cairo University, Cairo, U.A.R. 
M S .  received 23rd May 1969, in revised form 20th October 1969 

Abstract. A method is developed for the calculation of the matrix element 
for any nuclear reaction in which n nucleons are transferred from the projectile 
to the target nucleus. As an example, the matrix element for the four-nucleon 
transfer reaction is derived in the Born approximation. Comparison with the 
experimental angular distribution for the reaction I2C(d, "i)*Be is carried out 
in both the diffraction and the plane wave models and the results are compared 
with the experimental data. 

1. Introduction 
The theory of direct reactions was applied successfully to one (Butler 1951), two 

(El-Nadi 1957, 1960, El-Nadi and El-Khishin 1959, El-Nadi and Sherif 1961,1962, 
Newns 1960, Glendenning 1960, 1965, Yoshida 1962), and three-nucleon transfer 
reactions (El-Nadi and Sherif 1964, El-Nadi et al. 1967). In  the treatments of 
multiple-nucleon transfers of two or more nucleons the nucleons may be transferred 
as a cluster (Honda e t  al. 1964) or as independent particles. I n  such cases the single- 
cluster stripping will be similar to the single-nucleon stripping process. One may 
wonder whether, in such multi-nucleon transfer processes, there will be a difference 
in the results by considering the transferred nucleons as a single cluster or as separate 
particles. I n  the present work a general procedure is outlined for the derivation of the 
matrix element for the n-nucleon transfer reaction. The  transferred particles are 
considered independently. The  shell model is used for the description of the nuclear 
states, and harmonic oscillator wave functions are used for the single-particle states. 
These assumptions enabled one to use the parentage coefficients for separating the 
wave function of the stripped nucleons from that of N nucleons, and to make use of 
the Talmi transformation techniques to separate the relative motion from the centre-of- 
mass motion (Moshinsky 1959, Smirnov 1961). 

2. Formulation 
Let y M J t r ( n l j ) N  be the wave function of a nucleus consisting of N nucleons in its 

incomplete shell (nlj). By the fractional parentage coefficients one may separate from 
this wave function the wave function of n nucleons : 



1 SO 

where 
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d e f is the 9 j  symbol and [a] = 2a + 1. i, h Ii 
U 

Now, by the Talmi-transformation technique, one may change the wave function 
describing the single-particle motion into a function of the relative and centre-of-mass 
motion. Using Talmi coefficients of the first kind (Moshinsky 1959, Smirnov 1961) 
the single-particle wave functions of the first two nucleons are converted into the 
wave function of the relative distance between the two nucleons and the wave function 
of their centre of mass. By suitable angular momentum transformations one may 
then couple the orbital momentum of the centre-of-mass motion of the first two 
nucleons with the orbital momentum of the third, using Talmi transformations of the 
second kind leading to the wave function describing the relative motion between the 
centre of mass of the first two nucleons and the third nucleon, multiplied by the 
wave function describing the centre-of-mass motion of the three nucleons. This 
process is continued to the n nucleons, and one may finally write 

n 
Y E O - E P , A ~ ~ ( ~ ~ ) ~  = 2 Jj (nTt'Li', zi,-l,i4,-1,t; gt,z ' "- 1, ilNi,-lLi.-l,  ntZi; g i >  

i = 2  

. .  - 
all the transformation brackets required to make the orbital momentum Li ,  couple 
with z i + 1 ;  Y n z  i,~,,-l,,,mi,-l,i is the wave function describing the relative motion 
between the centre of mass of i'- 1 nucleons and the ith nucleons, and YNn,L,,M,,(Rn) 
is the wave function describing the motion of the centre of mass of the n nucleons. The  
a coefficients and the Clebsch-Gordan coefficients can be written after writing the 
Talmi transformation brackets. 

As an illustration of equation (3) one may consider the cases of n = 2 and 3.  
For n = 2, i = 2 only, and equation (3) gives 

~L?24&w)2 = 2 <NzLz, n12l1z; =w, 1ln14, n z k  9 2  > 
x (LzM,, l12m12 I $ P 2 & ~ L p , ) y n 1 2 1 1 L p , m l z ( r 1 2 ) Y 1 "  

For n = 3, i = 2 and 3, and one obtains 
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where 

and where a 

Now, the transiticn amplitude for the reaction A(a, b)B, in Bhich n nucleons are 
transferred from the projectile ‘a’ to the target ‘A’ to form ‘B’, in the distorted wave 
Born approximation (DWBA), may be written as 

1 is the 6j  symbol. 
d e f  

Tfl = (Xkt(-)(rf)#B#bl ‘f - ufIXki(+)(rZ)#A#a ) a  (4) 
V, is the interaction potential in the final reaction channel, and Uf is the h-B 
optical model potential. 

Substituting from equations (l),  (2) and ( 3 )  into equation (4), one obtains for the 
reaction A(a,b)B 

T f ~  = 2 y(a; b, c)Y*(B; A, c)(112m12, GnmGn192dL?,) 

* * ( Ln’‘n‘ , ln ’ - l ,  nmn’ - 1 n [ gnmfn)(  I 1 2  m 1 2 ’ ,  Gn’mG, j 2 n ’ d a , ’ )  

* *  - ( L n f f w n f ,  ‘A’- l ,nm;‘- 1 , n  lgn’mg,’)(Jbmb, Jcmc I 
(JAMA, JCmCI JBMB)r (5) 

where 9 is the spectroscopic factor containing all the parentage coefficients, Talmi 
transformation and the angular momentum transformation brackets (Abul-Magd 
et al. 1967), and F is given by 

n 

r = (xkP(- ) ( r f )  I7 [ui’n, , -,,, l ’ j ,  --I,, m ‘ , , - J r f - l , J I  

XY.“,,~,,~n,M’,.(R.)II/; - U f I X k l ( + ) ( r l )  n 
3 = 2  

n 

2 = 2  

If we write the interaction potential as V, = Vbc + VbA, the latter part is approxi- 
mately cancelled by the potential U,. The  residual potential V b ,  may be expressed as 
2?=1Vib, i.e. as a sum of nucleon-nucleon potentials. As a result of the antisym- 
metry of the wave functions for the particles b and c, each of these terms will there- 
fore give equal contributions, and hence 

Vbc = nVnb(rnb)* 

3. Four-nucleon transfer reaction 
For the case of the four-nucleon transfer reaction, 9 ( a ;  P, y )  will be given by 

9 ( a ;  P,  r )  = ( j N - 4 ( a l ) J ~ , j 4 ( a 2 ) J y ;  J&j%)JJ 
x ( A T 2 L 2 ,  n1242; - 9 2 l L 1  I n A  ndz; 3 2  > 
x (N3,L3’, % 3 k v 3 ;  g3 12, 1 IN2,Lzt, n3l3; g3 > 
x (N+L+, n3r4Z3t4;g+13, llN3,L3,, n41+;g4>( L2 

-92) - 9 3  13 g3 
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and Y is given by 
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4n[l]! 
[ I  - A] ![A] ! 

Figure 1. Vector diagram for the transfer process. 
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In  deriving equation (7)  the multipole expansion of spherical harmonics was used 
and the lowest value of Yntltmt, i.e. n'3,4 = n3,4 = 0, was considered. 

This is the expression for the DWBA for the transfer of four nucleons. Taking 
now, as an illustration, the plane wave limit in equation (9), one has 

F = 4v, 2 gL3,4gL13 4 ( Z ' 3 , 4  -Xf(mf3,4 - mA,), X'mA'j Z'3t4mf3,4) 
x (Z34-h(m3t4 - mh), XmaIZ3r4m3,4)(Xm~X' - m,,IAm,)(hm,~m,IL~'-~~')  

where 

A, = /YN4L,(R)j,(QR)Ra+a'+2exp( -8R2) dR 

with 
b A 

b + 4  A + 4  
K = -ki- k,, Q =  ki-- kf 

p = A + " + # ,  7 = 6+a,. 

a, and a2 are the oscillator parameters for the functions $N4,L4,(R) and YN4L4(p)  respec- 
tively. The  lowest state, i.e. N4 = AT4, = 0, is taken for both functions, and their 
normalization constants are denoted, respectively, by NL4,  and NL4. 

4. A special example 
The reaction W ( d ,  6Li)8Be will now be considered, where, according to the shell 

model, the four transferred nucleons in 6Li are (1 P3/2', 1 S1,22) for which 9,' = 0 
and g4' = 0, and in 12C are (1 P312~) for which LY4 = 0 and $P2 = 0. 

For the pick-up mechanism, we replace ki by - k, in both Q and K .  In  the 
present treatment we always consider the lowest oscillation state, i.e. with principal 
quantum number zero. One obtains finally for the transition amplitude 
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The theoretical curve obtained by equation (1 1) for the plane wave limit is 
compared with the experimental data of Daehnick and Denes (1964). When the plane 
wave limit is applied to the experimental data only the forward peak is clearly defined. 
The  second, smaller, peak does not appear in the plane wave cluster transfer model, as 
can be seen from figure 2. Better agreement is noticed with the distorted wave curve 
for the cluster, which is also shown in figure 2. 
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Figure 2.  Angular distribution of ELi nuclei from the reaction lZC(d, 6Li)8Be. 
The experimental data are those of Daehnick and Denes (1964). Full curve, plane 
wave calculations for four-nucleon transfer; broken curve, %-cluster transfer in 
the distorted wave Born approximation ; chain curve, %-cluster transfer in 

plane wave Born approximation. 

Owing to the short-comings of the plane wave calculations, it was necessary to 
perform calculations based on the diffraction model and these are reported in 3 5. 

5. Diffraction model 
In  this section, one may introduce the condition of strong absorption in both the 

initial and final channels in the evaluation of the amplitude given by equation (8) in 
$ 3  (Henley 1965, Frahn 1966). This may seem a justifiable assumption owing to 
the composite nature of the incident and outgoing particles. Using a zero-range form 
for the potential V(P4b)j  i.e. 

v(i(P4b) v08(P4-gr34)*  (12) 
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Equation (8) may be written as 

and 

A p4)xkr(-) (-----It4) A 
A + 4  

where the operator VR4 in the exponent is assumed to operate on the plane wave 
limit of the functions $*). I n  this approximation equation (13) becomes 

A 
kf ki - - Q’ = - b 

b + 4  A + 4  

Now, the distorted wave functions may be expanded in partial waves, the co- 
ordinate system being chosen such that k, defines the z axis and ki x kf the y axis: 

I44771 xk,!+)(R4) = -- 2 iE’(2Z’ + 1)’12 exp(io,,(i))~,(i)(ki, R4) Y10,(ff4) 
k i 4  1’ 

where 6’ is the scattering angle in the centre-of-mass system. Substituting equation ( I f )  
into equation (16), and integrating over R4 yields: 

A 
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where 
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and where the radial integrals are defined by 
XI 

RI,,I,N4'L4'(ki, k,) = j fi"O)(k,', ~,)U~~,~~,(~,)fi,(i)(k~, R4) dR,. (19) 

These radial integrals, for strongly absorbed particles, are peaked in a narrow region 
of 1 space around 1, = kR,, where R, is the interaction radius. As suggested by 
Sopkovich (1962), a DWBA radial integral may be expressed in terms of the same 

0 

i 
" C  (d,6Li l  'Be 

Ed =14.70 MeV 

I I I I 

e [C.M.) 

Figure 3. Angular distribution of 6Li nuclei from the reaction T ( d ,  6Li)8Be. 
Full curve, diffraction model calculations for four-nucleon transfer; broken 
curve, distorted wave Born approximation for the a-cluster transfer (Daehnick 
and Denes 1964) ; chain curve, diffraction model calculations for a-cluster transfer. 
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integral over the undistorted wave (except for the case of Coulomb distortion), 
multiplied by factors which are the square root of the elastic nuclear scattering 
functions in the initial and final channels, i.e. 

R1,81,N4’L4’(ki, k f ’ )  = {q1,,(kf))’I2 1 1 r , l , { y 1 , ( k i ) ] 1 ~ 2  (20) 
where 11,,,, is the radial integral for the case of no nuclear distortion. The  factor 
(71 ,,)1’2, for strong absorption, supresses contributions from partial waves below 
I,“ N kfRo,  and I,’ N kiRo. Hence one may use the asymptotic forms for the function 
f’, and the bound-state wave function UNaTL4, .  Moreover, if L, i_s small compared 
with the cut-off values of I,” = lo’, one may write I,,,,, as I , with 1 = $ ( L ” + Z ’ ) .  

Using, now, the expression obtained by Dar (1965, 1967) for the radial intcgral 
I and following the same procedure used by Potgieter and Frahn (1966) and Frahn 
and Sharaf (1969) for evaluating the sum over I in equation (18), one finds, finally, 
for B N 4 t L 4 W 4 >  

where 
1 

x [ (H+ + ~ - ) ~ , ~ ~ 4 , , { ( I ~ + ~ ) e } -  i (H+ - H - ) ~ , M ~ , ~ - ~ ~ ( ~ ~ + ~ ) B } ]  
i{l +p(Oc 5 O + i6))n-h 
sinh((0, i 6 + i S ) h }  

(22) 
1 
2 sinh{nh(B, I 0 + is)) 

X(O, i B + i6)An IT, = _- - 

and 0, is the Coulomb angle. 
I n  evaluating this expression, r l l  is taken as 

If one adopts this procedure for the calculation of the reaction I2C(d, 6Li)8Be and 
applies the selection rules used in $4, the angular distribution obtained for both 
four-nucleon and @-cluster transfer models is as shown in figure 3.  Agreement with 
the data is very satisfactory up to 60”. 

6. Discussion 
From equation (9), one may notice that the nucleons 1 and 2 are transferred to the 

target nucleus in the same relative Z state as they were in the projectile; the relative 
motion between the centre of mass of the first two nucleons and the third nucleon is 
also the same in the two states. 

This means that the two states of the four transferred nucleons differ only in the 
relative motion between the centre of mass of the first three nucleons and the fourth 
nucleon. This is also valid for the general case of transfer of n nucleons, where the 
relative I state between the centre of mass of the transferred n-  1 nucleons and the 
nth nucleon will be the only state changed. In  the case of the cluster transfer reactions 
(Abul-Magd et al. 1965), the interaction responsible for the transition V,b is taken 
to depend on the distance between the centre of mass of the four-nucleon cluster and 
that of the outgoing particle, while in the present treatment the interaction is taken 
as a sum of the interaction of the outgoing particle with each of the four captured 
nucleons separately. The  residual interaction Vlb + v z b  + VSb + V,, - Vcb might 
cause the cluster composed of the four captured nucleons to suffer internal excitation 
in the process of its transfer. 
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The effect of this internal excitation may explain the deviation between the four- 
nucleon transfer results and those deduced for the case of cluster transfer, which can 
be seen in both figure 2 and figure 3. Although the difference between the four- 
nucleon transfer and the cluster transfer is small in the diffraction model when using 
the approximations introduced above, one may expect these differences to be small 
in the case of multi-nucleon transfer. Better agreement with experimental data may 
be obtained with the diffraction model formula either by considering higher-energy 
data (and consequently large I,) or using a more accurate method of evaluating the 
radial integrals. But, in any case, the diffraction model curve gives the exact trend 
of the angular distribution, and the diffraction curve for the cluster transfer is compar- 
able with the DWBA curve. 
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